temfpy

dev-team temfpy

Nov 20, 2020

4

5

Nonlinear equations
Optimization

Uncertainty quantification
Acknowledgement

Bibliography

Bibliography

Python Module Index

Index

CONTENTS

15
19
21
23
25

27

temfpy

temfpy is an open-source package providing test models and functions for standard numerical components in com-
putational economic models.

With conda available on your path, installing and testing temfpy is as simple as typing

$ conda install -c opensourceeconomics temfpy
$ python -c "import temfpy; temfpy.test ()"

Supported by

CONTENTS 1

https://temfpy.readthedocs.io/en/latest
https://opensource.org/licenses/MIT
https://github.com/OpenSourceEconomics/temfpy/actions?query=branch%3Amaster
https://www.codacy.com/gh/OpenSourceEconomics/temfpy?utm_source=github.com&utm_medium=referral&utm_content=OpenSourceEconomics/temfpy&utm_campaign=Badge_Grade
https://codecov.io/gh/OpenSourceEconomics/temfpy
https://ose.zulipchat.com
https://github.com/OpenSourceEconomics

temfpy

2 CONTENTS

CHAPTER
ONE

NONLINEAR EQUATIONS

We provide a variety of non-linear equations used for testing numerical optimization algorithms.

temfpy.nonlinear_equations.broyden (x, a=3, 0.5, 2, 1, jac=False)
Broyden tridiagonal function.

T
Fi(z) =z1(a1 — agx1) — azza + ay
Fi(z) = zi(a1 — agw;) — xi—1 — a3xiy1 + aq
1=2,3,...,p—1
Fp(z) = xp(ar — agp) —xp1 +as
Parameters
* x (array_1like)— Input domain with dimension p > 1.
* a(array_like, optional)— The default array is (3, 0.5, 2, 1).

* jac (bool) —If True, an additional array containing the numerically and the analytically
derived jacobian are returned. The default is False.

Returns
* array_like — Output domain.

* array_like — Only if jac = T'rue. Tuple containing the analytically derived Jacobian and
the numerically derived Jacobian.

References

Examples

>>> import numpy as np

>>> from temfpy.nonlinear_ equations import broyden
>>>

>>> np.random.seed (123)

>>> p = np.random.randint (3,20)

>>> x = np.zeros (p)
>>> np.allclose (broyden(x), np.repeat(l,p))
True

temfpy

temfpy.nonlinear_equations.chandrasekhar (x,y, ¢, jac=False)
Discretized version of Chandrasekhar’s H-equation.

T
z— (Fi(z) Fa(x) Fy(z))
¢ < T -
Fi@) = o~ [1- £y 4
pj:1 Yi + Y
1=1,2,...,p

Parameters
* x (array_1like)— Input domain with dimension p.
* y(array_1like,)— Array of constants with dimension p
* c (float)— Constant parameter

* jac (bool) — If True, an additional array containing the numerically and the analytically
derived jacobian are returned. The default is False.

Returns
* array_like — Output domain

* array_like — Only if jac = True. Tuple containing the analytically derived Jacobian and
the numerically derived Jacobian. Numerically derived Jacobian only if dimension p > 1.

References

Examples

>>> import numpy as np
>>> from temfpy.nonlinear equations import chandrasekhar

>>>
>>> np.random.seed (123)
>>> p = np.random.randint (1,20)

>>> x = np.repeat (2,p)

>>> y = np.repeat (1,p)

>> ¢ =1

>>> np.allclose (chandrasekhar (x,y,c), np.zeros(p))
True

temfpy.nonlinear_equations.exponential (x,a=10, b=1, jac=False)
Exponential function.

v (Fi(z) Fa(z) ... Fyp(x)"
Fi(z) =e™ —b
Fi(z) = 2(6”’* +xio1)—b
1=2,3,...,p

Parameters
* x (array_1like)—Input domain with dimension p.
* a(float, optional)- The default value is 10.

e b(float, optional)- The default value is 1.

4 Chapter 1. Nonlinear equations

temfpy

* jac (bool) —If True, an additional array containing the numerically and the analytically
derived jacobian are returned. The default is False.

Returns
* array_like — Output domain

* array_like — Only if jac = True. Tuple containing the analytically derived Jacobian and
the numerically derived Jacobian.

References

Examples

>>> import numpy as np

>>> from temfpy.nonlinear equations import exponential
>>>

>>> np.random.seed (123)

>>> p = np.random.randint (1,20)

>>> x = np.zeros (p)

>>> np.allclose (exponential (x), np.zeros(p))

True

temfpy.nonlinear_equations.rosenbrock_ext (x, a=10, 1, jac=False)
Extended-Rosenbrock function.

x— (Fi(z) Fy(z) ... Fp@c))T
Foi1(z) = ay (w2 — 235;,_1)

Fyi(x) = ag — w91,

i=1,2,3,...,

[Nl lS

Parameters
* x (array_1ike)— Input domain with even dimension p > 1.
* a(array_like, optional)- The default array is (10,1)

* jac (bool) — If True, an additional array containing the numerically and the analytically
derived jacobian are returned. The default is False.

Returns
* array_like — Output domain

* array_like — Only if jac = True. Tuple containing the analytically derived Jacobian and
the numerically derived Jacobian.

References

BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional
Nonlinear Objective Function.

temfpy

Examples

>>> import numpy as np

>>> from temfpy.nonlinear equations import rosenbrock_ext
>>>

>>> np.random.seed (123)

>>> p = 2*np.random.randint (1,20)

>>> x = np.zeros (p)

>>> compare = np.resize([0,1], p)

>>> np.allclose (rosenbrock_ext (x), compare)

True

temfpy.nonlinear_equations.trig_exp (x,a=3, 2, 5,4, 3, 2,8, 4, 3, jac=False)
Trigonometrical exponential function.
ze (Fi(x) Fy(x) ... Fyx)"
Fi(x) = a103 + agwy — a3 + sin(x; — x9) sin(x; + 22)
Fi(z)=—x;—1e" 7% 4 x;(ag + a5m?) + agTis1
+ sin(z; — xi41) sin(z; + x441) — a7
i=23,...,p—1
Fp(z) = —xp_1e"771 7% + agx, — ag
Parameters
* x (array_like)—Input domain with dimension p > 1.
* a(array_like, optional)- The default array is (3,2,5,4,3,2,8,4,3).

* jac (bool) — If True, an additional array containing the numerically and the analytically
derived jacobian are returned. The default is False.

Returns
* array_like — Output domain

* array_like — Only if jac = True. Tuple containing the analytically derived Jacobian and
the numerically derived Jacobian.

References

Examples

>>> import numpy as np

>>> from temfpy.nonlinear_equations import trig_exp

>>>

>>> np.random.seed (123)

>>> p = np.random.randint (3,20)

>>> x = np.zeros(p)

>>> compare = np.insert (np.array([-5,-3]1), 1, np.repeat (-8, p-2))
>>> np.allclose(trig_exp(x), compare)

True

temfpy.nonlinear_equations.troesch (x, rho=10, a=2, jac=False)

6 Chapter 1. Nonlinear equations

temfpy

Troesch function.

T
v (Fi(z) Fa(z) ... Fy(x))
1
Cpl
Fy(x) = ax1 + ph?sinh(pz1) — 2,
Fi(x) = ax; + ph® sinh(px;) — xi—1 — T4
1=2,3,...,p—1
F,y(z) = ax, + ph*sinh(pz,) — x4
Parameters
* x (array_like)—Input domain with dimension p > 1.
e rho (float, optional)-— The default value is 10

* a(float, optional)- The default value is 2

* jac (bool) —If True, an additional array containing the numerically and the analytically

derived jacobian are returned. The default is False.
Returns

* array_like — Output domain

* array_like — Only if jac = T'rue. Tuple containing the analytically derived Jacobian and

the numerically derived Jacobian.

References

Examples

>>> import numpy as np

>>> from temfpy.nonlinear equations import troesch
>>>

>>> np.random.seed (123)

>>> p = np.random.randint (1,20)

>>> x = np.zeros (p)

>>> np.allclose(troesch(x), np.zeros(p))

True

temfpy

8 Chapter 1. Nonlinear equations

CHAPTER
TWO

OPTIMIZATION

We provide a host of models and functions that are often used for testing and benchmarking exercises in the numerical
optimization literature.

temfpy.optimization.ackley (x, a=20, b=0.2, c=6.283185307179586)
Ackley function.

=

fl@)=—aexp | —

=
8
N

N
Il
—

d
exp (il Z cos(cxﬁ) +a+exp(l)
i=1

IS

Parameters

* x (array_1like)— Input domain with dimension d. It is usually evaluated on the hyper-
cube x; € [—32.768,32.768], foralli = 1,...,d.

* a(float, optional)- The default value is 20.

e b(float, optional)- The default value is 0.2.

e c(float, optional)- The default value is 2.
Returns Output domain

Return type float
Notes
This function was proposed by David Ackley in [A1987] and used in [B1996] and [M2005]. It is characterized

by an almost flat outer region and a central hole or peak where modulations become more and more influential.
The function has its global minimum f(z) =Oatz = (0 ... O)T.

temfpy

Chapter 2. Optimization

10

temfpy

References

Examples

>>> from temfpy.optimization import ackley
>>> import numpy as np

>>>

>>> x = [0, 0]

>>> y = ackley (x)

>>> np.testing.assert_almost_equal(y, 0)

temfpy.optimization.rastrigin (x,a=10)
Rastrigin function.

d

f(z) =ad+ Z (27 — 10 cos(2mz;))

i=1
Parameters

* x (array_1like)— Input domain with dimension d. It is usually evaluated on the hyper-
cube z; € [-5.12,5.12], forall i = 1,...,d.

* a(float, optional)- The default value is 10.
Returns Output domain

Return type float

Notes

The function was first proposed by Leonard Rastrigin in [R1974]. It produces frequent local minima as it is
highly multimodal. However, the location of the minima are regularly distributed. The function has its global

minimum f(z) =0atz = (0 ... O)T.

References

Examples

>>> from temfpy.optimization import rastrigin
>>> import numpy as np

>>>
>>> x = [0, 0]
>>> y = rastrigin (x)

>>> np.testing.assert_almost_equal(y, 0)

temfpy.optimization.rosenbrock (x)
Rosenbrock function.

U

@) = 3 [100(ziss — 22)° + (1 22)]

=1

Parameters x (array_11ike)— Input domain with dimension d > 1.
Returns Output domain

Return type float

11

temfpy

80
70

S 8839
fixy, x3)

10

Chapter 2. Optimization

12

temfpy

Notes

The function was first proposed by Howard H. Rosenbrock in [R1960] and is often also referred to, due to
its shape, as Rosenbrock’s valley or Rosenbrock’s Banana function. The function has its global minimum at

r=01 ... 1"

References

Examples

>>> from temfpy.optimization import rosenbrock
>>> import numpy as np

>>>
>>> x = [1, 1]
>>> y = rosenbrock (x)

>>> np.testing.assert_almost_equal(y, 0)

13

temfpy

14 Chapter 2. Optimization

CHAPTER
THREE

UNCERTAINTY QUANTIFICATION

We provide a host of models and functions that are often used for testing and benchmarking exercises in the uncertainty
quantification literature.

temfpy.uncertainty_quantification.borehole (x)
Borehole function.

o) = 2z (e — x3)
/@) In (z4/x5) (1—1—%—&—&)

In (z4/x5)ziar s

Parameters x (array_1ike)— Core parameters of the model with dimension 8.
Returns Flow rate in m? /yr.

Return type float
Notes
The Borehole function was developed by Harper and Gupta [H1983] to model steady state flow through a
hypothetical borehole. It is widely used as a testing function for a variety of methods due to its simplicity and

quick evaluation (e.g. [X2013]). Harper and Gupta used the function originally to compare the results of a
sensitivity analysis to results based on Latin hypercube sampling.

References

Examples

>>> from temfpy.uncertainty quantification import borehole
>>> import numpy as np

>>>

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]

>>> y = borehole (x)

>>> np.testing.assert_almost_equal(y, 34.43500403827335)

temfpy.uncertainty_quantification.eoq _model (x, r=0.1)
Economic order quantity model.

241’01‘2
Y=\ —
X1

15

temfpy

Parameters

* x (array_1like)— Core parameters of the model.

* r(float, optional)- Annual interest rate (default value is 0.1).
Returns y — Optimal order quantity.

Return type float

Notes

This function computes the optimal economic order quantity (EOQ) based on the model presented in [H1990].
The EOQ minimizes the holding costs as well as ordering costs. The core parameters of the model are the units
per months xg, the unit price of items in stock x1, and the setup costs of an order x5. The annual interest rate
r is treated as an additional parameter. A historical perspective on the model is provided by [E1990]. A brief
description with the core equations is available in [W2020]. The figure below illustrates the core trade-off in
the model. Holding x; and z2 constant, an increase in xg results in a decrease in the setup cost per unit, but an
increase in capital cost increases as the stock of inventory increase.

— Setup
Capital
—— Total

Cost

S

\

1,000 2,000 X* 3,000 4,000

Size of order

16 Chapter 3. Uncertainty quantification

temfpy

References

Examples

>>> from temfpy.uncertainty quantification import eog_model
>>> import numpy as np

>>>

>>> x = [1, 2, 3]

>>> y = eog_model (x, r=0.1)

>>> np.testing.assert_almost_equal(y, 18.973665961010276)

temfpy.uncertainty_quantification.ishigami (x, a=7, b=0.05)
Ishigami function.

f(x) = sin(x1) + asin’®(xy) + bas sin(w)
Parameters

* x (array_1like)— Core parameters of the model with dimension 3.

* a (float, optional) — The default value is 7, as used by Sobol’ and Levitan in
[S1999].

* b(float, optional)- The default value is 0.05, as used by Sobol’ and Levitan.
Returns Output domain

Return type float
Notes
This function was specifically developed by Ishigami and Homma [11990] as a test function used for uncertainty

analysis. It is characterized by its strong nonlinearity and nonmonotonicity. Sobol” and Levitan note that the
Ishigami function has a strong dependence on x5.

References

Examples

>>> from temfpy.uncertainty quantification import ishigami
>>> import numpy as np

>>>
>> x = [1, 2, 3]
>>> y = ishigami (x)

>>> np.testing.assert_almost_equal(y, 10.037181146302519)

temfpy.uncertainty_quantification.simple_linear_function (x)
Uncomplicated linear function.

This function computes the sum of all elements of a given array.

Parameters x (array_1ike)— Array of summands

17

temfpy

Examples

>>> from temfpy.uncertainty quantification import simple_linear_function
>>> import numpy as np

>>>
>>> x = [1, 2, 3]
>>> y = simple_linear_function (x)

>>> np.testing.assert_almost_equal(y, 6)

18 Chapter 3. Uncertainty quantification

CHAPTER
FOUR

ACKNOWLEDGEMENT

temfpy is developed and maintained as part of the OpenSourceEconomics initiative. We build on the work in
[S2013], [B2016], and [W2020b].

Project Manager

* Philipp Eisenhauer (peisenha)
Developers

¢ Luis Wardenbach (luward)

¢ Mila Kiseleva (milakis)

* Leigiong Wan (loikein)

¢ Manuel Huth (manuhuth)

19

http://open-econ.org
https://github.com/peisenha
https://github.com/luward
https://github.com/milakis
https://github.com/loikein
https://github.com/manuhuth

temfpy

20 Chapter 4. Acknowledgement

CHAPTER
FIVE

BIBLIOGRAPHY

21

temfpy

22 Chapter 5. Bibliography

[V2009]

[V2009]

[V2009]

[V2009]
[V2009]

[V2009]

[A1987]

[B1996]

[M2005]

[R1974]
[R1960]

[H1983]

[X2013]

[H1990]
[E1990]

BIBLIOGRAPHY

Varadhan, R., and Gilbert, P. D. (2009). BB: An R Package for Solving a Large System of Nonlinear
Equations and for Optimizing a High-Dimensional Nonlinear Objective Function. Journal of Statistical
Software, 32(1):1-26, 20009.

Varadhan, R., and Gilbert, P. D. (2009). BB: An R Package for Solving a Large System of Nonlinear
Equations and for Optimizing a High-Dimensional Nonlinear Objective Function. Journal of Statistical
Software, 32(1):1-26, 2009.

Varadhan, R., and Gilbert, P. D. (2009). BB: An R Package for Solving a Large System of Nonlinear
Equations and for Optimizing a High-Dimensional Nonlinear Objective Function. Journal of Statistical
Software, 32(1):1-26, 2009.

Varadhan, R., and Gilbert, P. D. (2009).

Varadhan, R., and Gilbert, P. D. (2009). BB: An R Package for Solving a Large System of Nonlinear
Equations and for Optimizing a High-Dimensional Nonlinear Objective Function. Journal of Statistical
Software, 32(1):1-26, 2009.

Varadhan, R., and Gilbert, P. D. (2009). BB: An R Package for Solving a Large System of Nonlinear
Equations and for Optimizing a High-Dimensional Nonlinear Objective Function. Journal of Statistical
Software, 32(1):1-26, 20009.

Ackley, D. H. (1987). A connectionist machine for genetic hillclimbing. Boston, MA: Kluwer Academic
Publishers.

Back, T. (1996). Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary pro-
gramming, genetic algorithms. Oxford, UK: Oxford University Press.

Molga, M., and Smutnicki, C. (2005). Test functions for optimization needs. Retrieved June 2020, from
http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf.

Rastrigin, L. A. (1974). Systems of extremal control. Moscow, Russia: Mir.

Rosenbrock, H. H. (1960). An Automatic Method for Finding the Greatest or Least Value of a Function.
The Computer Journal, Volume 3, Issue 3, Pages 175-184

Harper, W. V., and Gupta, S. K. (1983) Sensitivity/uncertainty analysis of a borehole scenario compar-
ing Latin hypercube sampling and deterministc sensitivity approaches. Office of Nuclear Waste Isolation,
Battelle Memorial Institute.

Xiong, S., and Qian, P. Z., and Wu, C. J. (2013). Sequential design and analysis of high-accuracy and
low-accuracy computer codes. Technometrics, 55(1), 37-46.

Harris, F. W. (1990). How many parts to make at once. Operations Research, 38(6), 947-950.

Erlenkotter, D. (1990). Ford Whitman Harris and the economic order quantity model. Operations Research,
38(6), 937-946.

23

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

temfpy

[W2020] Economic order quantity. (2020, April 3). In Wikipedia. Retrieved from
https://en.wikipedia.org/w/index.php?title=Economic_order_quantity&oldid=948881557

[[1990] Ishigami, T., and Homma, T. (1990). An importance quantification technique in uncertainty analysis for
computer models. In: Uncertainty Modeling and Analysis, 1990. Proceedings., First International Sympo-
sium on (pp. 398-403).

[S1999] Sobol’, I. M., and Levitan, Y. L (1999). On the use of variance reducing multipliers in Monte Carlo com-
putations of a global sensitivity index. Computer Physics Communications, 117(1), 52-61.

[B2016] A. Biirmen, J. Puhan, J. OlenSek, G. Cijan, and T. Tuma. Pyopus-simulation, optimization, and design.
EDA Laboratory, Faculty of Electrical Engineering, University of Ljubljana. Retrieved May, 2020, from
http://spiceopus.si/pyopus/index.html, 2016.

[R1960] H. Rosenbrock. An automatic method for finding the greatest or least value of a function. The Computer
Journal, 3(3):175-184, 1960.

[S2013] S. Surjanovic and D. Bingham. Virtual library of simulation experiments: Test functions and datasets.
Retrieved May, 2020, from http://www.sfu.ca/ ssurjano, 2013.

[V2009] R. Varadhan and P. Gilbert. Bb: an r package for solving a large system of nonlinear equations and for
optimizing a high-dimensional nonlinear objective function. Journal of statistical software, 32(1):1-26,
2009.

[W2020b] Wikipedia. Test functions for optimization. Retrieved May, 2020 from
https://en.wikipedia.org/w/index.php ?title=Test_functions_for_optimization&oldid=937963949, 2020.

24 Bibliography

https://en.wikipedia.org/w/index.php?title=Economic_order_quantity&oldid=948881557

PYTHON MODULE INDEX

t

temfpy.nonlinear_equations, 3
temfpy.optimization,9
temfpy.uncertainty_quantification, I5

25

temfpy

26 Python Module Index

A

ackley () (in module temfpy.optimization), 9

B

borehole () (in
temfpy.uncertainty_quantification), 15
broyden () (in module temfpy.nonlinear_equations), 3

C

module

chandrasekhar () (in module
temfpy.nonlinear_equations), 3

eoq_model () (in module
temfpy.uncertainty_quantification), 15

exponential () (in module
temfpy.nonlinear_equations), 4

I

ishigami () (in module

temfpy.uncertainty_quantification), 17

M

module
temfpy.nonlinear_equations, 3
temfpy.optimization, 9
temfpy.uncertainty_quantification,

15

R

rastrigin () (in module temfpy.optimization), 11
rosenbrock () (in module temfpy.optimization), 11

rosenbrock_ext () (in module
temfpy.nonlinear_equations), 5
simple_linear_function () (in module

temfpy.uncertainty_quantification), 17

T

temfpy.nonlinear_equations

INDEX

module, 3
temfpy.optimization
module, 9
temfpy.uncertainty_quantification
module, 15
trig_exp () (in module temfpy.nonlinear_equations),
6

troesch () (in module temfpy.nonlinear_equations), 6

27

	Nonlinear equations
	Optimization
	Uncertainty quantification
	Acknowledgement
	Bibliography
	Bibliography
	Python Module Index
	Index

